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Abstract

We present a simple thermodynamic model for shear-induced concentration banding in polymer solutions, based on a nonequilibrium
chemical potential depending on the shear rate. This dependence provides a coupling between diffusion and shear, besides the more classical
coupling provided by the divergence of the viscous pressure tensor. When both couplings are taken into account, shear-induced concentration
banding appears in a natural way. If the initial homogeneous concentration is higher than a threshold value, shear banding appears for
sufficiently high value of the shear rate +; if the initial concentration is lower, the steady-state concentration profile under shear is smooth.
The banding profile depends on the polymer molecular mass and therefore it provides a basis for the chromatographic separation of polymers
of different molecular mass. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Shear-induced phenomena in suspensions or solutions, as
for instance migration and phase separation, are an active
topic of research [1-3]. There is currently a live discussion
about the relative importance of the thermodynamic and the
dynamic contributions to these phenomena, i.e. whether
they may be attributed to a non-equilibrium modification
of the chemical potential or are due to a purely dynamical
coupling between viscous pressure and diffusion. Here we
will deal with this topic by starting from a generalised
constitutive equation for the diffusion flux as applied to
shear-induced concentration banding and its application to
molecular separation.

A well-known constitutive equation for the solute diffu-
sion flux J in the presence of viscous pressure is [4—8]

- D
with ., the local-equilibrium chemical potential of the
solute, P the viscous pressure tensor, D the classical diffu-
sion coefficient and D a transport coefficient related to D

* Corresponding author. Tel.: +34-93-5811563; fax: +34-93-5812155.
E-mail address: jou@circe.uab.es (D. Jou).

through the relation D = D(aueq/an)fl, with n the solute
concentration (in moles per unit volume). The viscous pres-
sure tensor, also called by some authors as viscous stress
tensor, is defined in terms of the total pressure tensor P and
of the equilibrium pressure p as P¥ = P — pU, with U the
unit tensor. The second term in this equation describes a
coupling between viscous pressure and diffusion. Its physi-
cal interpretation is rather clear: minus the divergence of the
viscous pressure tensor contributed by the polymer is the
local net force density on the polymer chains and these
respond by moving in the direction of this force.

In several papers [3,9—13] we have explored the con-
sequences of a generalisation of Eq. (1), where instead of
the local-equilibrium chemical potential, a generalised
chemical potential depending on the viscous pressure is
used. This chemical potential arises in a natural way in
thermodynamic theories as extended irreversible thermody-
namics (EIT) [14—18], where the thermodynamic functions
depend on the dissipative fluxes acting on the system, or in
theories with internal variables [19-20], where the micro-
structural details of the system (as for instance the molecular
configuration tensor) are taken into account. In this way, a
double coupling of diffusion with viscous pressure appears
in Eq. (1): a linear dependence on the divergence of P* given
by the second term, and a quadratic dependence on P"
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through the generalised chemical potential in the first term.
Indeed, in equilibrium thermodynamics it is well known that
chemical potential gradients are different from con-
centration gradients, and may have different sign in some
occasions. The new aspect of our work is to include non-
equilibrium effects due to the flow in the chemical potential.
These effects are not present, of course, in equilibrium
theories, but turn out to play a relevant role in the dynamics
of polymer separation, as it has been shown in [12] in
connection with the experimental results reported in [22].

By using for the chemical potential the expression
derived from EIT [14—18] we have evaluated the contribu-
tions of both terms to the shear-induced shift of the spinodal
line of polymer solutions under flow [3,9—11] and shear-
induced polymer migration [12,13]. The purpose of this
paper is to apply this analysis to shear-induced concentra-
tion banding, namely, the appearance of bands of different
concentrations under the action of a viscous pressure in an
initially homogeneous polymer solution [21,22].

This phenomenon may have practical outcomes in new
methods of chromatography, i.e. for separation of macro-
molecules of different mass [1,23—25], as in other technical
and biological situations, because the banding profile
depends on the molecular mass. Note that in the literature
the expression shear banding may also refer to a different
situation [26—30] in which bands of different shear rate,
rather than of different concentrations, appear, but here we
focus our attention on concentration effects. In Section 2 we
give the expression of the generalized chemical potential
incorporating the effect of the flow. In Section 3 we use it
to describe concentration banding and in Section 4 we apply
it to analize molecular separation after having considered
the mass dependence of the concentration profile derived in
the Section 3.

2. Chemical potential under flow

To describe the evolution of concentration, the constitutive
equation (1) must be complemented with an equation of state
for the chemical potential. In EIT [13-16], the chemical
potential depends not only on temperature, pressure and
concentration but also on the viscous pressure and it is given
by [3,12]

L— 7
Vn o(JV) PP, ()
4V on

(T, p,c,P*) = uey(T,p,c) +

where V is the volume of the system, V = OVIon)rp p,
the partial molar volume of the solute, and J the so-called
steady-state compliance defined as J = 7/n (with 7effective
relaxation time and 7 the total viscosity of the solution) from a
qualitative perspective, the contribution depending on P*
describes the stored elastic free energy in the chains stretched
by the flow.

Introduction in Eq. (1) of the generalised chemical potential
(2) instead of the local-equilibrium chemical potential

yields
D
J = —DeVe — —V-P', 3
off VC T o (3)

where Dy is an effective diffusion coefficient defined by
[12]

D o
Defp = —— =
(I teq/On) \ On
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As itis seen in Eq. (4), D depends explicitly on the viscous
pressure.

In Fig. 1 we plot the effective diffusion coefficient D.g
calculated according to expression (4) as a function of the
reduced concentration ¢(= [n]nM), with M the solute mole-
cular mass and [7] the intrinsic viscosity, for a solution of
high molecular mass polystyrene (M = 2 000 kg/mol) in
oligomeric polystyrene of 0.5 kg/mol, at 0.20 wt% (the
system so called 2 M in Ref. [22]) for different values of
the shear rate. To obtain it, we used for the viscous pressure
tensor an upper-convected Maxwell model together with a
Rouse—Zimm model for the steady-state compliance and the
viscosity [9], and we considered a cone—plate device, where
the only nonvanishing components of the viscous pressure

are [22]
P}y = 2RTn(17)%; P}y = RTnty, 5)

where ¢ and 6 refer to the axial and azymuthal directions,
respectively, in such a way that the double contraction of P"
is given by

P : P’ = 2(nRT)*[2(m1)* + (1)D)]. (©6)

Deﬁ/D

Fig. 1. Ratio D.g/D calculated from Eq. (4) as a function of the concentra-
tion for three values of the shear rate (continuous curve 1.5 sfl, dashed and
dot curve 1.0s™" and dashed curve 0.5s™'). The system considered is
polystyrene with a molecular mass 2000 kg mol ' solved in oligomeric
polystyrene [22].
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Fig. 2. For values of shear rate and concentration in the region above the
curve in this Figure, the effective diffusion coefficient D.g is negative and
therefore the initially homogeneous system splits in two regions with differ-
ent concentrations. For a given value of 7y, the values of the concentration
near the apex and near the edge are given by the interaction of the hori-
zontal line corresponding to the value of ¢ with the curve plotted in the
Figure The minimum of this curve corresponds to the threshold value of y
for shear banding.

It is seen in Fig. 1 that for 7 higher than a threshold value,
D, is negative for concentration values between ¢, and &,,
which depend on y (especially the upper value ¢,, whereas
the lower one is relatively insensitive to y). The negative
contribution to D,y may be interpreted by saying that the
stored elastic free energy per chain is higher in a region of
large compliance (at constant stress). Accordingly, at fixed
stress chains will migrate away from regions of low concen-
tration, where compliance is higher. For some values of
¢ and 7, this tendency may overcome the usual tendency
to flow from higher to lower concentration, which is
described by the first term in Eq. (4).

Fig. 2 shows the domain of values of ¢ and y for which
D, is negative (at given T and p): this corresponds to the
region above the curve, which has a minimum for a given
critical value 7y, of the shear rate. In fact, this curve is
nothing but the spinodal line in the & — y plane, as it corre-
sponds to the limit of stability of the solution. For a fixed v,
the values of ¢; and ¢, are given by the intersection of this
curve with the corresponding horizontal line. Note the
threshold ¢&;,, below which the effective diffusion coefficient
is always positive: banding would not be present for concen-
trations lower than this value.

3. Shear-induced concentration banding

Figs. 1 and 2 suggest directly a mechanism for shear
banding. Assume one starts from an homogeneous solution
with initial concentration &, and that one imposes on the
system a constant shear rate by rotating the cone at suitable
angular speed. The second term in Eq. (1) always produces a

flux of solute towards the apex of the cone [12,21]. When
D.g is positive, this flux will be opposed by the con-
centration-driven diffusion flux and an (usually smooth)
inhomogeneous steady state will be reached eventually. If,
in contrast, Dy is negative, the inhomogeneization process
will be much faster because the flux produced by V-P" will
be amplified. This gives separation times two orders of
magnitude lower than those predicted when D4 is positive
[12], in agreement with the experimental results in [22].

This fast migration will eventually lead to a steady state
in which the system will be split in two different bands, as
sketched in Fig. 3. The inner band will have a high solute
concentration approximately equal to ¢, and the outer one
a low solute concentration approximately equal to ¢,
separated by a rather sharp region with a steep concentration
gradient. The conditions imposed on the profile are ¢ = ¢,
for x=1and ¢ = ¢, forx = 0, with x = r/R, r being the
distance to the apex and R the outer radius of the device.
In fact, this profile will be rounded-off as a compromise
between the migration towards the centre due to the second
term in Eq. (3) and the outgoing diffusion driven by the
concentration gradient in the regions with positive D but
the detailed numerical analysis is far from trivial; further-
more, our purpose here is not the obtention of the explicit
form of the profile, but rather to illustrate a criterion for
the conditions under which shear-induced concentration
banding is expected to occur.

For initial inhomogeneous concentration higher than &,
(the lowest concentration for which Dt may become nega-
tive for sufficiently high vy, according to Fig. 2) banding will
appear for values of the shear rate higher than the ones
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Fig. 3. Sketch of the steady-state concentration profile in a cone-and-plate
device for three different values of the shear rate (1.5 sfl, 1.0s™" and
0.8 s™") as a function of the ratio x = r/R of the distance r to the apex of
the cone and the outer radius R of the device. The initial homogeneous
concentration value ¢ is higher than the critical value ¢.. The region of
steep increase is determined by mass conservation in the device, and the
inner and outer concentrations correspond to ¢, and ¢, respectively. In
actual situations, the profile will be rounded off due to the influence of
the last term in Eq. (3).
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corresponding to Fig. 2. Goveas and Fredrickson [21] have
obtained a similar behaviour in their theoretical analysis of
banding in a polymer solution in a wide-gap Couette flow
between two coaxial cylinders; a steep part in the con-
centration profile appears for sufficiently high values of
the shear rate. They use for the chemical potential the
local-equilibrium form and the concentration inhomo-
geneity is due in their model only to the term V-PV in
Eq. (3). The nonequilibrium chemical potential used in
our work amplifies the separation rate and the steepness of
the profile. The support of this evidence was given by the
comparison of our result with the experimental data
obtained by MacDonald and Muller [13,22].

Noziéres and Quemada [26], in an analysis of the hydro-
dynamic stability of suspensions flowing along a cylindrical
tube, have also found under some circumstances a negative
diffusion coefficient, which is seen to be related to unstable
fluctuations which break the system in different bands or
domains. Let us finally stress that this analysis does not
exclude the possibility of other influences on shear banding.
For instance, some models [6] assume a strong dependence
of the rheological coefficients (viscosity, normal stress
coefficients) on the concentration, which in this way couple
to diffusion and contribute to induce migration. The fact that
in our model this dependence is not necessary for banding
does not preclude that it may exist and further enhance the
effects considered here.

4. Shear-induced chromatography

Chromatographic techniques, i.e. the separation of differ-
ent molecules initially mixed, have obvious and very wide
applications [23-25]. Here, we study how the coupling
between diffusion and flow considered in the Section 3
may provide a basis for macromolecular separation.

In Fig. 4 we plot the limit of the region where D is
negative in the plane of shear rate y versus reduced concen-
tration ¢ for three different molecular masses (2000, 3000
and 4000 kg/mol, respectively) of macromolecular poly-
styrene in oligomeric polystyrene. Fig. 4 generalizes Fig.
2, in which the region of negative D was plotted only
for a single molecular mass (M = 2000 kg/mol). As in
Fig. 2, for a given value of the concentration &, D g becomes
negative if the value of the shear rate is higher than the value
indicated by the curve. According to the experimental data,
the critical value y. corresponding to the minimum of the
curves is seen to depend on the macromolecular mass as
V(M) oc M35,

From this graph it is easy to find a semiquantitative
description of the mass separation process. Of course, the
detailed numerical analysis would be much cumbersome,
but a simplified semiquantitative analysis is much useful
in understanding the role of D in the separation process.

Here, we will illustrate with two different situations the
physical process. We consider a solution of three kinds of
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Fig. 4. For values of shear rate and concentration in the region above the curve
in this Figure, the effective diffusion coefficient D.gis negative, for solutions of
macromolecular polystyrene with M = 2000, 3000 and 4000 kg/mol, respec-
tively, solved in oligomeric polystyrene of 0.5 kg/mol.

macromolecular polystyrene, of respective masses 2000,
3000 and 4000 kg mol " in oligomeric poslystyrene. We
assume, for the sake of simplicity, that the reduced concen-
tration of these three species is initially the same, namely
¢o = 0.5, in an homogeneous solution in the cone-and-plate
device considered in Section 3. As a further simplification,
we assume that the concentration is low enough that the
different macromolecular species behave independently of
each other. Of course, these drastic simplifications may be
removed at the price of more effort. We aim to describe the
concentration profile of the three kinds of macromolecular
species in the steady state reached after a sufficiently long
time of rotation of the cone.

First, we consider a shear rate y = 0.35 s~ . The point
corresponding to the initial conditions of the system is situ-
ated in the region where D is negative for the macromo-
lecules of M = 4000, but it is positive for the two other
molecular species. Thus, the concentration of the latter
ones will vary slightly on the position, with a slight
tendency to accumulate near the apex. In contrast, since
D.s is negative for macromolecules of M = 4000, the
system will split into two different regions: one near the
centre, with a high concentration of M = 4000 macro-
molecules, and another with a low concentration near the
wall. The values of these two concentrations are given
approximately by the intersection of the horizontal line
corresponding to y = 0.35 s~! with the curve labelled
4000 in Fig. 4. This situation is depicted schematically in
Fig. 5a, where the almost-vertical part of the profile has
been calculated from the mass conservation condition. As
itis seen in Fig. 2, the central zone will be rich in molecules
with M = 4000.

The second situation corresponds to a shear rate y = 1.0.
For this value of y and for &, = 0.4, D is negative for the
three macromolecular species. Now, the system will split
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Fig. 5. Concentration profiles of polystyrene macromolecules of different
molecular mass under shear viscous pressure. Fig. 5Sa and b correspond to
different initial homogeneous conditions, detailed in the text.

into two regions for each species: a central one, rich in the
species, and an external one, with a low concentration.
The values of the concentration near the central region
and in the external region are given approximately by the
intersection of the horizontal line corresponding to y =
1s~! with the three corresponding curves plotted in Fig. 4.
The situation is depicted in Fig. 5b when the same initial
concentration ¢ = 0.4 is supposed for all the species.

A third possibility could be, for instance, that y = 1 s7!
but that the initial reduced concentration of M, is 1.0 (it is
inside the zone with D.; negative) whereas ¢ = 2.0 for M;
and M, macromolecules (thus corresponding to positive
D). In this case, the concentration of M; and M, in the
steady state will depend only slightly on the position
whereas that of M, near the apex will be enhanced with
respect to its value in the initial homogeneous situation.

The actual values of the central and the external
concentrations are not strictly equal to the value
obtained in the mentioned intersections in Fig. 4, but
must take into account the correction due to the

influence of the second term in Eq. (3). Anyway, this
semi qualitative analysis of these two situations is, in
our opinion, sufficiently illustrative of the fact that the
nonequilibrium chemical potential predicts a separation
process of the macromolecular species as a function of
their mass. Note that the concentration band separation
is more marked at lower Deborah numbers (7y) for
higher molecular weight: the same conclusion was
reached in Ref. [21]. Of course, further analysis is necessary
either to get higher precision as to apply it to other initial
conditions. We hope that this short presentation may look
sufficiently promising to encourage further development of
this approach.

5. Concluding remarks

Shear-induced effects in polymer solutions are a very
interesting field of research for nonequilibrium thermo-
dynamics, because of the interplay between dynamical
and thermodynamical effects. In this paper we have shown
that the analysis of the effects of a generalized chemical
potential including the nonequilibrium contributions of
the viscous pressure, which has already been shown to
drastically accelerate the shear-induced separation
process [12,13,22], may be also useful to give a quali-
tative description of shear-induced concentration band-
ing and of shear-induced macromolecular separation.
Detailed quantitative analysis should solve in detail the
dynamical equation (3) combined with the equation of
state (2).

In fact, in this paper we have studied the limits of
stability, i.e. the concentrations corresponding to the
spinodal line rather than to the coexistence line. To obtain
the latter, one should analyse in detail the relation between
the chemical potential of the solute in both phases. In
equilibrium, the equality of such chemical potential
yields the equal-area Maxwell construction to determine
the concentrations at the coexistence situation. However,
when the divergence of the viscous pressure tensor in
Eq. (3) does not vanish, the condition of vanishing diffusion
flux would lead to different values for the chemical potential
at different phases, as found from integration of Eq. (3).
This could imply modifications of the Maxwell construction
in non-equilibrium steady states. Since this topic is of
special fundamental interest, it will be analysed in the
future.

The concept of an effective diffusion coefficient to deter-
mine the limit of stability of the homogeneous solution has
also been used by Milner [31] in a dynamical description of
coupled concentration fluctuations and stress in an
entangled polymer solution, based on a two-fluid model of
the polymer and solvent dynamics. He studied a plane
Couette flow along the x axis, with velocity profile given
by v.(y) = yy and obtained an anisotropic effective diffu-
sion coefficient whose components along the y and z axis
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where q is the wavevector of the perturbation, { the friction
coefficient of the drag force between the polymer and the
solvent, i, and s, normal stress coefficients related to the
normal components P, and P}, of the viscous pressure and
a = dlnE/dlnn, with E the elastic modulus. In the Rouse
model, @ = 1 and in the upper-convected Maxwell model
both s, and ¢, vanish (see, for instance, Refs. [3,4]). Thus,
in the situation studied in this paper, Eq. (7) reduce to
D =D and do not predict a shear-induced polymer
separation (this is not so, of course, in the entangled polymer
regime, to which Milner’s paper is originally focused on).
The reason of this discrepancy is a different definition for
the nonequilibrium chemical potential, which in our case
contributes to D even in the dilute situation (see Refs.
[4,12] for a thorough discussion), in agreement with experi-
mental results reported in [22], and which are not described
by Milner’s choice of the chemical potential. Furthermore,
our work has been focused on the radial component of the
diffusion flow, because the other ones do not contribute, due
to the symmetry of the situation, to the polymer separation.
This is the reason we have not considered in full detail the
directional dependence of a generalized diffusion coeffi-
cient, which is not necessary in the situation we are consid-
ering, but which could be of interest if we aimed to the
analysis of light scattering in the flowing solution, which
was the central of interest by Milner in Ref. [31].

Recall, finally, that in the literature one often refers to
shear banding the appearance of bands with different shear
rates but with almost uniform concentration [27-30]. This is
found in fluids with elongated molecules exhibiting differ-
ent orientations in the different bands. To describe this
phenomenon, one uses a generalised constitutive equation
for the viscous pressure, rather than for the diffusion flux.
For instance, Dhont [27] has proposed for the viscous pres-
sure a constitutive equation which for plane Couette flow
reads

2.
P} = —ny + k) ®)
dy
with m the viscosity and k a new transport coefficient intro-
duced ad hoc to take into account non-local effects in the
viscous pressure. This is not incompatible with our model.
Indeed, in EIT Eq. (2) used in this paper is compatible with a

generalisation of the constitutive equation for P" in the form
P’ = —29(Vv)® — 27RT(VJ)", ©)

where relaxation terms of the form rdP'/d¢ have been not

included for the sake of simplicity. Thus, in a homogeneous
system, neglecting the first term in Eq. (3) and introducing
the second term in Eq. (9) one obtains for plane Couette flow
an equation analogous to Eq. (8). This points to the possi-
bility that in actual situations both inhomogeneities in
concentration and in shear rate may occur simultaneously,
in such a way that both the point of view of the present paper
and of Ref. [27] should be taken into account. Of course,
there may also be situations in which one of both effects
(diffusion or viscous pressure) is dominant in such a way
that the other one may be neglected, thus leading to a
considerable simplification as that considered here or,
alternatively, that analysed in Ref. [27].
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